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Abstract which results in the following charge distribution 

In the Spallation Neutron Source (SNS) ring, multi-turn 
injection is employed to obtain a large transverse beam 
size which significantly reduces the space-charge tune shift 
of the accumulated beam. Careful choice of the painting 
scheme and bump function is required to obtain the desired 
beam profile together with low beam loss. In this paper 
we examine, both analytically and numerically, the effect 
of the space charge on the beam profile during multi-turn 
injection painting. 

[(a - U(T))" - x2][(b - V(T))" - y2] ' (3) 

where r is the charge density per unit length. For the case 
of correlated painting, the functions u and v have the form 

44 = a- g(4), 44 = b(l -g(d), (4) 

where g(r) can be any desired bump function. We note 
that one gets logarithmicaly infinite density (with an as- 
sumption of infinitely small linac beam size) along the lines 
x/u = &y/b, regardless of the choice of g(r). For the 
choice g(r) = fi, one can easily obtain 

1 INTRODUCTION 

We concentrate on the beam distribution which results 
from multi-turn correlated painting which is the primary 
painting scheme in the present SNS design [ 11. In this pa- 
per we describe only the space-charge effect which is ex- 
plored both analytically and numerically. We also present 
time evolution studies of the full-intensity beam after the 
end of the multi-turn injection process. Additional effects 
which also influence stability of the beam distribution, such 
as painting schemes and bump functions, magnet errors 
and imperfection resonances, space-charge coupling res- 
onances, choice of working point, etc., are reported else- 
where [l]-[9]. 

2 ANALYSIS 

2.1 Painting procedure 
Here we present the simplified analysis of a painting 

procedure [lo], which also may be obtained as a partic- 
ular case from a more general treatment [3]. We assume 
a pencil-like linac beam which is injected into the ring at 
coordinates (2, y) = (a, b), while the closed orbit is at 
(z, y) = (21, v). The betatron motion is then determined 
by 

x-u=((a-u)cosv& y-v=(b-v)cosv,t. (1) 

Assuming that u(t) and w(t) vary slowly, we populate the 
(2, z), (5, y) phase spaces with the distribution function 

f = ‘wnst-6 (5 + (x - u)2 - (a - u)“) (2) 

S($+(y-+(b-q), 
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P(X,Y) = g) 14x + dF3, (3 

where x = ,/WI,/ x*/a* - y*/b*, with lines of 
constant density being hyperbolas. The (2, z), (0, y) phase 
space projections will be uniformly populated ellipses with 
semi-axis (a/~~, a), (b/v,, b), respectively. 

2.2 Effect of space charge 
The analytic calculation of space-charge forces from the 

charge distribution given by Eq. 5 is difficult for the square 
beam profile resulting from the correlated painting. We 
thus assumed a comparable model with cylindrical geome- 
try based on the correct behavior near z = y = 0. Using 
x=rcos0,y=rsin6,weobtain 

p(r,6) =C[lnT - 2 ~cos4mQ], (6) 
m=l 

where C, R are to be determined later, and 0 5 r 5 R. 
The electric potential due to Eq. 6 can be written as 

+(r, 6) = z [Fo + 2 q,(r) cos4m6]. (7) 
m=l 

Solving Poisson’s equation, we obtain 

&, = $ -$r(l+ln~)+l+ln2 , r<R 
(ln4 + 3) In $ 1 , r>R ’ 

(8) 

4&d = R* 
16m(4m2 - 1) (91 

=$$$i-(2m-!-l)g , r<R 
-(2m - 1,s ’ , r>R 



We then choose R = 2a/&‘i to keep the total area the 
same. The constant C.= r/(2a2[1 +ln4]) is then obtained 
so that the total charge per unit length is T. The fields can 
be now calculated from Eq. 7. Since the charge density has 
a strong dependence on 0 we observe the tendency of the 
space-charge force to equalize the dependence on 0 through 
Eo, which only arises from the space-charge force. As a 
result, one finds that the azimuthal force vanishes due to 
symmetry at B = 0, n/4, etc., and is strongest at 0 = n/8, 
where it acts to reduce the singularity at 0 = n/4. The 
above analysis can be used to estimate the characteristic 
time scale of the diffusion process. Using the fact that F, 
decreases rapidly as m increases, we approximate it by the 
leading m = 1 term. We then find the time scale of the 
diffusion process in the azimuthal direction to be of the or- 
der of only a few turns in the ring. To estimate the radial 
diffusion one needs a more accurate conversion to cylindri- 
cal geometry with a subsequent analysis using the Vlasov- 
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Poisson equation. However, due to the small tune depres- 
sion we expect this diffusion to give only a modest growth Figure 1: 2-D density plot (X-Y) for correlated painting 
(a few percent) in the beam radius. Thus, we explore the with square-root bump function (without space charge). 
radial diffusion numerically in the next section. - 
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3 NUMERICAL SIMULATION 

3.1 Beam distribution due to painting 
For the simulations presented in this paper we used the 

ORBIT code [ 111. These studies were later extended tak- 
ing into account the effect of magnet errors using the SNS 
simulation package based on the Unified Accelerator Li- 
braries environment [8]. In the case of correlated painting, 
the beam is painted to a square shape; this results in a high 
density distribution along the diagonals which is in good 
agreement with the analytic prediction given by Eq. 5. Fig- 
ure 1 shows a 2-D density plot (without space charge) for 
the square-root orbit bump function g(r) = fi. The 
inclusion of space charge leads to rapid azimuthal diffu- 
sion, in agreement with tbe analytic estimates. Figure 2 
shows 2-D density plot (of the final distribution at the end 
of multi-turn injection) for the square-root bump function, 
with space charge included in simulations. 

3.2 Time evolution ofdistributions 
In our numerical simulations we need to optimize the 

bump function to find the best compromise between the 
target requirements, low beam loss and acceptable space- 
charge tune spread. To satisfy the target requirement, 
which demands a density distribution close to uniform, we 
paint to a hollow distribution in the absence of space charge 
[4]. The required “hole” corresponds to a signiticant initial 
closed orbit offset from the injection foil. An example of 
a 1-D density profile with such painting is shown in Fig. 3 
in the absence of space charge. Clearly, for such a signif- 
icant closed orbit offset the square shape beam profile is 
no longer preserved due to a strong space-charge force at 
the beam boundary. The resulting transformation towards 
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Figure 2: 2-D density plot (X-Y) for correlated painting 
with square-root bump function (with space charge). 

a circular beam profile will be satisfactory as long as a den- 
sity is close to uniform. Figure 4 shows the resulting beam 
profile after 1052 injection turns for the distribution which 
satisfies the target requirements. For other possible appli- 
cations we also explore the feasibility of long time storage 
of a full intensity beam after multi-turn injection. Figure 5 
shows time evolution of such a beam for the case of very 
small initial closed orbit offset (“small hole”). It clearly 
demonstrates the redistribution process associated with the 
square beam profile. However, for a “big hole” distribution, 
the beam profile is already circular by the end of injection 
which results in a subsequent smooth diffusion during ad- 
ditional storage time, as shown in Fig. 6. 



Figure 3 1-D density profile in transverse direction. X axis 
- beam size in mm, and Y axis - density in arbitrary units. 
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Figure 4: Beam profile with (red) and without (blue) space 
charge for bump function with significant initial closed or- 
bit offset from injection foil (“big hole”). 

Another important issue for long time storage of a full 
intensity beams is the possibility of a parametric halo and 
associated emittance growth. Such a halo comes from a 
significant rms mismatch of the beam and is not expected 
during the multi-turn injection process [5], [12]. A para- 
metric halo was for example observed in the simulations 
for the SNS lattice with close tunes v, M + using the KV 
distribution [13]. In the case of a realistic distribution de- 
scribed above and the split-tune case (v,, v~) = (6.3,5.8) 
no such halo was observed. The resulting rms mismatch 
at the end of 1052 injection turns is small (of the order 
of a few percent). It stays at the same level during addi- 
tional storage time shown in Figs. 5-6. Thus, the beam 
core is stable with some diffusion only in the tails. The ra- 
dial diffusion shown in Figs. 5-6 becomes stronger when, 
for example, the magnet errors are included in simulations. 
However, the additional spreading is not dramatic as long 
as dangerous imperfection resonances are avoided [8], [9]. 
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Figure 5: Distribution of beam halo at subsequent time 
steps (every 200 turns) after 1052-turn injection (from ad- 
ditional 200 turns (blue) to additional 1000 turns (green)). 
The case of a small initial closed orbit offset. -- 
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Figure 6: Distribution of beam halo at subsequent time 
steps (every 200 turns) after injection (from additional 200 
turns (blue) to additional 1000 turns (green)). The case of 
large (“big hole”) initial closed orbit offset. 
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